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The large magnetic anisotropy within lanthanide (Ln)
ions has made complexes of the 4f ions attractive candidates
for making new single-molecule magnets (SMMs).[1,2] Per-
haps the most interesting results have been reported by the
Ishikawa group for the phthalocyanine (Pc) double-decker
complexes [Pc2Ln]� ,[1] which in the cases of Ln= terbium-ACHTUNGTRENNUNG(III) and dysprosium ACHTUNGTRENNUNG(III) display very large energy barriers
for the relaxation of magnetisation. Coronado and co-work-
ers have reported similar slow relaxation for a single
erbium ACHTUNGTRENNUNG(III) centre coordinated to a polyoxometallate
ligand.[3] In addition to these monometallic complexes, poly-
metallic lanthanide clusters can also exhibit SMM proper-
ties, such as phenoxide-bridged dysprosium dimers in which
there is ferromagnetic exchange between the DyIII ions,[4]

and a tetranuclear dysprosium ACHTUNGTRENNUNG(III) cage compound with the
largest observed relaxation barrier in an SMM.[5] Other
polymetallic dysprosium ACHTUNGTRENNUNG(III) complexes are interesting for
their very unusual physics; for example, a dysprosium trian-
gle with a diamagnetic ground state despite having an odd-
number of unpaired electrons has been reported, which is
probably the first example of a toroidal spin state.[6]

The slow relaxation in monometallic phthalocyanine com-
plexes of TbIII and polyoxometallate complexes of ErIII show
that the strength of the crystal field at the LnIII ion is impor-
tant in controlling relaxation.[1,3] It is also odd that the

energy barriers in polymetallic lanthanide SMMs are larger
than the exchange interactions, suggesting that single-ion
anisotropy, due to the strength and symmetry of the local
crystal field, is probably the most important factor, and that
exchange is a secondary consideration that moderates the
magnetic relaxation of the single ions. These thoughts led us
to examine organometallic lanthanide complexes to look for
new SMMs: ligands such as cyclopentadienyl (Cp=h5-C5H5)
produce a much stronger crystal field than N- or O-donor li-
gands. Herein we report two organometallic dimers of dys-
prosium: [{Cp2DyACHTUNGTRENNUNG(m-bta)}2] (1) (btaH =1H-1,2,3-benzotria-
zole) and [{Cp2Dy ACHTUNGTRENNUNG[m-N(H)pmMe2]}2] (2) (NH2pmMe2 = 2-
amino-4,6-dimethylpyrimidine). Compound 1 was prepared
by employing an N–H deprotonation reaction between
[Cp3Dy][7] and benzotriazole, according to Scheme 1.

The benzotriazolide-bridged dimer 1 was crystallised by
slow cooling of a saturated thf solution to result in the for-
mation of colourless blocks suitable for X-ray crystallogra-
phy. Compound 2 was prepared according to a literature
procedure.[8] The molecular structure of 1 (Figure 1) consists
of a non-centrosymmetric dimer in which two dysprosium
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atoms are bridged by two [bta]� ligands, with each dysprosi-
um atom also being complexed by two terminal h5-Cp li-
gands. The three Dy�N bond lengths per dysprosium in 1
can be classified as short, medium and long, averaging 2.364,
2.448 and 2.540 �, respectively, resulting in a Dy···Dy sepa-
ration of 4.901 �. The Dy�C distances in 1 are in the range
2.625(17)–2.681(18) � for Dy1 and 2.63(2)–2.680(18) � for
Dy2, which are typical of dysprosium cyclopentadienides.
The Dy sites in 1 are nine-coordinate. Although the structur-
al motif [{Cp2Ln ACHTUNGTRENNUNG(m-En)}2] (En = heteroatom group) is
common in organolanthanide chemistry,[8,9] compound 1 is
the first example to contain [bta]� as the bridging ligand.
Compound 2 is an amido-bridged dimer containing nine-co-
ordinate DyIII centres with a Dy···Dy separation of 3.789 �;
the structure has been discussed in detail elsewhere.[8]

Magnetic studies were performed on polycrystalline sam-
ples of compounds 1 and 2. Both dimers show very similar
behaviour in both magnetisation against field and suscepti-
bility against temperature measurements. At room tempera-
ture, the cMT values of 27.2 and 28.1 cm3 K mol�1 for 1 and
2, respectively (Figure 2), are in good agreement with the

expected value of 28.34 cm3 K mol�1 for two non-interacting
dysprosium ACHTUNGTRENNUNG(III) ions (S=5/2, L= 5, J= 15/2, g=4/3, 6H15/2).

Upon cooling, cMT decreases gradually and then more
rapidly below 30 K to reach 16.2 (for 1) and
13.1 cm3 K mol�1 (for 2) at 2 K (1 kG field). The decline in
cMT with T is mostly due to crystal field effects (i.e. thermal
depopulation of the DyIII Stark sub-levels). The magnetisa-
tion versus field curves, measured below 4 K, are the same
shape for 1 and 2, and do not reach saturation up to a field
of 70 kG. The maximum value reached at 2 K and 70 kG is
9.88 NmB for 1 (inset of Figure 2) and 9.99 NmB for 2. Our
data can be compared with the expected magnetisation
value of 10.46 NB (2 �5.23 NB) for two uncorrelated DyIII

ions in an environment affected by crystal field effects, as
has been developed using Stevens operators in low symme-
try and then elaborated further.[10] This treatment has been
applied successfully to a variety of different DyIII ion envi-
ronments.[11] The lack of saturation of the M versus H data
and similarly non-superposition on a single master-curve of
the M versus H/T data suggest the presence of significant
magnetic anisotropy in 1 and 2.

Low-temperature ac magnetic susceptibility measure-
ments on 1 (Figure 3, and Figures S1 and S2 in the Support-
ing Information) reveal features associated with SMMs,[12]

while compound 2 only shows a weak increase in cM’’ below
4 K (see Figure S3 in the Supporting Information), but no
maxima were observed down to 1.8 K. For compound 1,
however, both the in-phase (cM’) and out-of-phase (cM’’)
components of the ac susceptibility recorded with zero-dc
field show strong frequency dependence below about 12 K,
and maxima are observed in cM’’ (Figure 3 a). At fixed tem-
peratures between 1.8 and 7 K and zero applied magnetic
field, we obtained semicircular Cole–Cole diagrams (cM’’
versus cM’; see Figure S4 in the Supporting Information),
which could be fitted by a generalised Debye model with
the a parameters in the range 0.02–0.1, which indicates a
narrow distribution of relaxation times.[13] Plotting the mag-
netisation relaxation times (t) obtained from the ac data as
ln t versus 1/T (Figure 3 b) one can observe that the relaxa-
tion time tends to saturate at approximately 4.5 K (t=7.0 �
10�4 s), when the dynamics of the magnetisation become
temperature independent and enter a pure quantum tunnel-
ling regime. Above 4.5 K, the relaxation process becomes
thermally activated and the data above 6.3 K obey the Ar-
rhenius law t=t0 exp ACHTUNGTRENNUNG(DE/kBT) with DE=46.5�2.4 K and
t0 =4.5 � 10�7 s, where DE is the energy barrier for the relax-
ation of the magnetisation and t0 is the pre-exponential
factor. The energy barrier in 1 is one of the largest observed
in a polymetallic lanthanide compound, albeit lower than
that observed in [Pc2Tb]� ,[1] and in the polynuclear dysprosi-
um complexes reported by Murugesu and co-workers.[4,5] In-
terestingly, the presence of a fast tunnelling relaxation chan-
nel in 1, marked by the divergence in cM’’ below the block-
ing temperature (Figure 3 a),[3b] allows the direct study of
the crossover between thermally activated relaxation and
direct tunnelling by employing only one experimental tech-
nique, namely: linear ac susceptibility measurements. Such

Figure 1. Molecular structure of 1. Selected bond lengths [�]: Dy1�N1
2.534(15), Dy1�N2 2.368(14), Dy1�N6 2.448(14), Dy2�N3 2.448(15),
Dy2�N4 2.360(14), Dy2�N5 2.545(14). Carbon atoms are black spheres;
hydrogen atoms not shown.

Figure 2. Temperature dependence of cMT of 1 and 2 for the field
strength H=1000 G. Inset: Plot of magnetisation (M) of 1 versus field at
2 and 4 K.
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behaviour is specific for lanthanide-based SMMs. It implies
that the superparamagnetic blocking (e.g. t> 1) in 1 is only
achieved for high frequencies, because of the fast zero-field
quantum tunnelling relaxation. To minimise this effect, we
performed ac susceptibility studies under an applied dc field
of 1000 G (see Figure S2 in the Supporting Information). As
expected for a SMM with a large energy barrier, the relaxa-
tion time remains almost unchanged in the thermally acti-
vated regime, but increases significantly in the quantum
regime (Figure 3 b), allowing the observation of the thermal-
ly activated regime at lower temperatures. Fitting the data
to the Arrhenius law yielded a slightly larger energy barrier
DE of 56.6�0.9 K and t0 of 1.0 � 10�7 s. This large energy
barrier to magnetisation reversal in 1 is an exciting result.
An almost greater surprise was that the related dimer 2
shows very similar behaviour to 1 in static fields, but produ-
ces no significant response in the ac susceptibility measure-
ments (see Figure S3 in the Supporting Information). On
comparing 1 and 2, the most obvious difference is the ex-

change pathway present in the two molecules; in 2 the
bridge is a single amido nitrogen, but in 1 the pathway is
more complicated.

To elucidate the electronic structures of 1 and 2 we car-
ried out density functional calculations[14] at the crystallo-
graphically determined geometries. The electronic states cal-
culated were for the DyIII 4f9 ions, each with spin, s= 5/2.
Taking the spins on the two Dy centres to be parallel gives a
total spin of S=5 and a multiplicity of 11. To describe ap-
propriately the Dy atoms we employed the large core (54
electron) CRENBL[15] relativistic effective core potential.
The accompanying valence basis set, from reference [15],
was fully uncontracted to the primitive set (6s 6p 6d 6f). All
other atoms were described with the all-electron 6-31G ACHTUNGTRENNUNG(d,p)
basis,[16] and the B3LYP[17] exchange-correlation functional
was used. The calculations were carried out using the tight
convergence criterion and ultrafine grid. The results give us
a working explanation for the differing behaviour. Firstly,
calculating the spin density in each case gives very similar
results (see Figure S5 in the Supporting Information); the
spin density is located entirely in the f orbitals of the two
dysprosium ions in each case. There is no sign of an ex-
change path involving spin density at the bridging N atoms
for either structure. This is completely consistent with the
measurements in static magnetic field.

Looking closely at the electronic distribution, we find
(using the atom-numbering scheme of Figure 1) that in 1
there are significant bonding interactions between N1 and
N6 with Dy1, and N3 and N5 with Dy2, and only a very
small interaction of N2 and N4 with their respective Dy cen-
tres. This is despite the N2�Dy1 and N4�Dy2 contacts being
the shortest N�Dy contacts in the structures. We have quan-
tified these interactions using Mayer bond orders[18]

(Figure 4) calculated with our in-house code. For compari-
son we have included two of the Dy�C(Cp) bond orders.
For example, summing the bond orders of Dy1 to all the
carbon atoms of the Cp ring above gives a total bond order
of 0.98. Hence the Dy1�N1 and Dy1�N6 bond orders (and
the equivalent interactions on Dy2) indicate significant
bonding. By contrast, the short Dy1�N2 and Dy2�N4 dis-
tances show very small bond orders, indicating no apprecia-
ble covalent bonding between these centres.

Using Mulliken population analysis we find charges on
Dy1/Dy2 of +1.12/+ 1.14 and on the N atoms: N1=�0.39;
N2=�0.25; N3=�0.47; N4=�0.24; N5=�0.40; N6=

�0.48. These parameters again suggest that the Dy�N inter-
actions are significantly less in the case of the central N
atoms. This behaviour probably stems from the nature of
the p orbitals of the [bta]� ligand. Simple p symmetry argu-
ments quickly tell us that the HOMO of each [bta]� ligand
has a node on the central nitrogen atom, hence in terms of
simple frontier orbital interactions we should not expect to
see a bond between these centres. Furthermore, if we con-
sider a plane perpendicular to the bta planes and passing
through the N2 and N4 atoms, thus bisecting the molecule,
we find that all ten high-spin singly occupied orbitals in 1
are distributed such that there is no orbital communication

Figure 3. a) Temperature dependence under zero-dc field of the out-of-
phase magnetic susceptibility (cM’’) of 1, in an ac field of 1.55 G oscillat-
ing at frequencies between 1 and 1200 Hz. b) Magnetisation relaxation
time (t) versus T�1 plot for 1 under zero-dc field (circles) and under a dc
field of 1000 G (squares), based on data collected in frequency (shaded
symbols) and temperature (open symbols) variation regimes. The solid
lines represent the best fits to the Arrhenius law of the thermally activat-
ed region with the parameters given in the text.
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between the two halves of the molecule across this plane.
This indicates there is no pathway for communication be-
tween the Dy centres via the [bta]� ligand. In 2, by contrasţ
the lowest energy high-spin singly occupied orbital shows a
significant bonding interaction involving Dy d orbitals with
p orbitals on the bridging amide nitrogen (Figure 5). The
two Dy atoms in 2 are symmetrically bonded to the two cen-
tral amido nitrogen atoms with essentially equivalent bond
orders of about 0.3. These bond orders are larger than any
of the Dy�N bond orders in 1. This interaction provides a
path for communication between the DyIII ions in 2 which is
not present in 1 (we have confirmed this by searching deep
within the orbital manifold of 1). Looking at the Mulliken
analysis for 2, we find charges on the two Dy atoms of
+0.92/+ 0.89 and on the two central amido nitrogens of
�0.85/�0.84, while the N atoms of the six-membered ring
nearest to the Dy carry charges of �0.55/�0.54 and the dis-
tant N atoms have charges of �0.40/�0.39. This also sug-

gests a much stronger ionic in-
teraction between the Dy and
the two central amido nitrogens
than that found in 2.

We conclude there is an in-
teraction between DyIII ions in
2 but not in 1. The interaction
in 2 is too weak to have a sig-
nificant influence on the static
magnetic behaviour, and so is
not detectable in either the sus-
ceptibility or magnetisation
measurements. However, the
interaction in 2 appears to be
sufficient to provide a relaxa-
tion mechanism for the magnet-
isation, hence 2 is not an SMM.
In 1, the dysprosium ions are
essentially isolated electronical-

ly from each other, and the observed slow relaxation is due
to single ion factors. This contrasts with the dimetallic dys-
prosium SMM reported by Murugesu et al.[4] where the
static magnetic measurements show a ferromagnetic ex-
change between the DyIII ions, and a larger energy barrier
for relaxation of magnetisation is found from the dynamic
studies. Our results, combined with the previous work of
others,[3,4] suggest that lanthanide-only SMMs with high
energy barriers could be created if control could be exerted
over the magnetic exchange interaction.

Experimental Section

1: A solution of [Cp3Dy] (0.18 g, 0.50 mmol) in THF (10 mL) was added
to a solution of btaH (0.060 g, 0.50 mmol) in THF (10 mL) at �78 8C.
The mixture was stirred at �78 8C (30 mins) and then slowly warmed to
room temperature. After the mixture was stirred at room temperature
for 16 h, a white precipitate formed. Following addition of more THF
(10 mL), the reaction mixture was briefly heated to reflux to give a col-
ourless solution, and then slowly cooled to room temperature. Storage
overnight resulted in the formation of colourless crystals of 1 (0.10 g,
24%). Elemental analysis calcd (%) for C32H28Dy2N6: C 46.77, H 3.44, N
10.23; found: C 46.66, H 3.46, N 10.24. Crystal data for 1: C32H28Dy2N6,
Mr =821.38, colourless blocks, crystal dimensions 0.2� 0.2 � 0.14 mm3, or-
thorhombic, P212121, a=7.8821(8), b= 16.5857(18), c =21.506(2) �, V=

2811.5(5) �3, Z=4, 1calcd =1.941 Mgm�3, m=5.307 mm�1, l ACHTUNGTRENNUNG(MoKa)=

0.7103 �, T =100(2) K, completeness to 2qmax (27.58)=93.8 %, 7077 re-
flections, 5533 unique reflections (Rint =0.0583), R1= 0.0682, wR2=0.149
using 5533 reflections with I> 2s(I), absolute structure parameter=

0.08(5). Crystals of 1 were mounted on thin glass fibres using perfluoro-
polyether oil and frozen in a flow of cold nitrogen gas from an Oxford
Cryostream instrument. Data were collected using an Oxford Diffraction
XCaliber 2 X-ray diffractometer. CCDC-750397 contains the supplemen-
tary crystallographic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif. Magnetic measurements were per-
formed on a Quantum Design MPMS XL SQUID magnetometer on
polycrystalline samples. Data were corrected for the diamagnetism of the
samples using Pascal constants, and the sample holder by measurement.
Frequency-dependent ac-susceptibility measurements used a QD MPMS
AC option.

Figure 4. Mayer bond orders for 1 (left) and 2 (right). The Cp ligands are shown as capped sticks and all H
atoms have been omitted.

Figure 5. Lowest energy high-spin orbital of 2 (shown as isosurface of
0.035 au). The Cp ligands have been shown as capped sticks and all H
atoms have been omitted (large grey spheres=Dy; darker grey=N; light
grey=C).
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